2-p-CHLOROPHENYLOXAZOLIN-5-ONES IN THE MANNICH REACTION

Hans Jorgen Petersen
Leo Pharmaceutical Products, Ballerup, Denmark.
(Received in UK 13 February 1969; accepted for publication 24 March 1969)
In the search for 2-substituted analogues of 2-p-chlorobenzamido-3-dialkylaminopropionic acids which possessed analgetic activity (1) it was disclosed that 2-p-chlorophenyloxazolin-5 -ones I, as active $4 H$-compounds, enter into an aminoalkylation reaction with secondary amines and formaldehyde, prior to ring cleavage in a hydroxylic solvent. The initial step in this concerted conversion of I into $I I$ is believed to be the first reported example of a Mannich reaction involving the 4-position of I, although other reactions are known to occur at this position (2).

 The compounds could be recrystallized from anhydrous ethanol. Their I. R. spectra (KBr) showed characteristic absorptions at $1815-25 \mathrm{~cm}^{-1}(\mathrm{C}=0)$ and $1645-65 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$. Exceptions were found with $\mathrm{R}=000 \mathrm{Et}$ (Ia) and $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$ (Ib), displaying broad absorption at 2300-2900 cm^{-1} and at $1625-1725$ (Ia) and $1645-65 \mathrm{~cm}^{-1}$ (Ib). This, in addition to the very poor solubility in organic media, points to the assignment of the isomeric structure III as the more appropriate one for (Ia-b). Recently similar structural arguments for 2-p-nitrophenyl-4-phenyloxazolin-5-one have been presented (3). (Ia) gave an intensely blue colour with ethanolic ferric chloride, as reported for 2-phenyl-4-carbethoxyoxazol in-5-one (4).

III (Ia-b)

On prolonged heating in acetic anhydride the formation of the strongly yellow lb was accompanied by the appearance of fair amounts of a new product, mp. $132 \cdot 5-33^{\circ} \mathrm{C}$. Elemental analysis, I.R. and N.M.R. spectra as well as reactions established the structure IV, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClNO}_{3}$. I.R. (XBr): 1795 and $1645 \mathrm{~cm}^{-1}$. N.M.R. ($10 \%, \mathrm{CCl}_{4}$): 9 aromatic protons ($\delta 7.60, \mathrm{~m}$) and 3 methyl protons $(\delta 2.37, \mathrm{~s})$. U.V.: $\lambda_{\max }^{\mathrm{EtOH}}(\varepsilon): 240 \mathrm{~m} \mathrm{\mu}(20.500), 299 \mathrm{~m} \mathrm{\mu}$ (18.900). With traces of alkali in ethanol IV was quickly converted into Ib. Triethylamine-catalyzed reaction with aniline in ether gave Ib and acetanilide. The formation of the 2-p-nitrophenyl analogue of IV under like conditions and a more general synthesis of enol esters of this type have been described (3, 5).

Addition of I to a small excess of secondary amine and aqueous formaldehyde in methanol or ethanol at $0-20^{\circ} \mathrm{C}$ and reaction for $1-20$ hours gave the respective esters II in $65-90 \%$ yield. Some esters were hydrolyzed to the free acid ($R^{\prime \prime}=H$) with alkali. Starting from $1-\alpha-p-c h l o r o-$ benzamido acids optically inactive products were obtained. The I.R. spectra (KBr) of the esters had absorptions at $3400-3440(\mathrm{NH}), 1730-40$ (ester $\mathrm{C}=0$) and 1650-70 (amide $\mathrm{C}=0$) cm^{-1}. No reaction was observed in ethanol, when ethyl α-p-chlorobenzamido- α-phenylacetate was used in place of lb (6).

In a single attempt of reaction in aqueous solution the glycine azlactone ($\mathrm{I}, \mathrm{R}=\mathrm{H}$) with dimethylamine and formaldehyde gave a 10% yield of the amino acid II ($\mathrm{R}=\mathrm{R}^{\prime \prime}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CH}_{3}$) which was identical with the compound obtained by addition of dimethylamine to $\alpha-p$-chlorobenzamidoacrylic acid (7).

IV with 2 moles of aqueous dimethylamine and mole of formaldehyde in methanol gave II, ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime}=\mathrm{R}^{\prime}=\mathrm{CH}_{3}$) in 80% yield, presumably via intermediate formation of Ib. Under similar conditions in 2-trifluoroethanol IV afforded the free acid II ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{H}$), apparently as a result of a concomitant smooth hydrolysis of the 2 -trifluoroethyl ester in the weakly

${ }^{\text {a) }}$: hydrochloride, hydrate; picrate: mp. $205-206.5^{\circ} \mathrm{C}$: b) : hydrate: ${ }^{\text {c) }}$: 3-Indolylmethyl:
d) : $\mathrm{NR}^{\prime}{ }_{2}=$ morfolino; e): $\mathrm{NR}^{\prime}{ }_{2}=\mathrm{N}$-methylpiperazino.
f) Cl calcd.: 11.33: found 11.36%
g) s calcd.: 8.93; found 9.12%
h) : Cl calcd.: 9.83: found 9.80%
alkaline medium.
The N.M. R. data of some 3-dimethylaminopropionic acid derivatives are compiled in the following table.

Acknowledgements: Thanks are due to Mr. F. Lund for valuable discussions and to Mr. N. Rastrup Andersen for providing the N.M.R. data.

$\mathrm{N}(\mathrm{Cl}$	N.M.R. data (Varian A60A. δ ppm from T.M.S., (J) cps).					
	R	R''	$\mathrm{N}_{-\mathrm{CH}_{-\mathrm{CH}_{3}}}$	$-\mathrm{CH}_{2} \mathrm{~N}^{<}$	-	Solvent
$\begin{aligned} & \mathrm{R}=\mathrm{CH}_{3} \\ & \mathrm{R}^{\prime \prime}=\mathrm{CH}_{3} \end{aligned}$	1.68 s	3.77 s	2.27 s	$\begin{aligned} & 2.80 \mathrm{~d} \\ & 3.00 \mathrm{~d}^{(1.4)} \end{aligned}$	$\begin{aligned} & 7.43 \mathrm{~d} \\ & 7.77 \mathrm{~d} \end{aligned}$	CDCl_{3}
$\begin{align*} & \mathrm{R}=\mathrm{CH}_{3} \tag{7}\\ & \mathrm{R}^{\prime}=\mathrm{CH}_{3} \mathrm{CH}_{2}- \end{align*}$	1.68 s	$\begin{aligned} & -\mathrm{CH}_{2} \mathrm{CH}_{3} 4.26 \mathrm{q} \\ & -\mathrm{CH}_{2} \mathrm{CH}_{3} 1.28 \mathrm{t} \end{aligned}$	2.27 s	$\begin{aligned} & 2.82 \mathrm{~d} \\ & 3.03 \mathrm{~d}^{(14)} \end{aligned}$	$\begin{aligned} & 7.43 \mathrm{~d} \\ & 7.77 \mathrm{~d} \end{aligned}$	CDCl_{3}
$\begin{aligned} & \mathrm{R}=\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{CH}_{2}- \\ & \mathrm{R}^{\prime}=\mathrm{CH}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{SH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \\ & \mathrm{CH}_{3} \mathrm{~s}- \\ & 2.50 \mathrm{~m} \\ & \end{aligned}$	3.83 s	2.23 s	$\begin{aligned} & 2.75 \mathrm{~d} \\ & 3.40 \mathrm{~d} \end{aligned}$	$7.45 \mathrm{~d}(8)$	CDCl_{3}
$\begin{aligned} & \mathrm{R}=\mathrm{C}_{6} \mathrm{IH}_{5} \\ & \mathrm{R}^{\prime \prime}=\mathrm{CH}_{3} \end{aligned}$	7.37 m	3.75 s	2.25 s	$\begin{aligned} & 3.47 \mathrm{~d} \\ & 3.70 \mathrm{~d} \end{aligned}$	$\begin{aligned} & 7.45 \mathrm{~d} \\ & 7.82 \mathrm{~d}^{(9)} \end{aligned}$	CDCl_{3}
$\begin{aligned} & \mathrm{R}=3-\text { indolyl }-\mathrm{CH}_{2}- \\ & \mathrm{R}^{\prime \prime}=\mathrm{CH}_{3} \end{aligned}$	$\begin{aligned} & \text { indol } 7.15 \mathrm{~m} \\ & -\mathrm{CH}_{2}-3.37 \mathrm{~d} \\ & -\quad 3.91 \mathrm{~d}(15) \end{aligned}$	3.73 s	2.23 s	$\begin{aligned} & 2.95 \mathrm{~d} \\ & 3.63 \mathrm{~d} \end{aligned}$	7.49 ma	CDCl_{3}
$\mathrm{R}=\mathrm{CH}_{3}$ $R^{\prime \prime}=H$	1.92 s		$\begin{aligned} & 3.13 \mathrm{~s} \\ & 3.30 \mathrm{~s} \end{aligned}$	$3.85 \mathrm{~d}(15)$	$\begin{aligned} & 7.58 \mathrm{~d} \\ & 7.90 \mathrm{~d} \end{aligned}$	$\mathrm{CF}_{3} 000 \mathrm{D}$
$\begin{aligned} & \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}- \\ & \mathrm{R}^{\prime \prime}=\mathrm{H} \end{aligned}$	$\begin{array}{cl} \mathrm{C}_{6} \mathrm{H}_{5} & 7.50 \mathrm{ma} \\ -\mathrm{CH}_{2}- & 4.05 \mathrm{~s} \text { or } \\ - & 3.55 \mathrm{~m} \end{array}$		$3.13 \mathrm{~s}$	$\begin{aligned} & 3.55 \mathrm{~m} \text { or } \\ & 4.05 \mathrm{~s} \end{aligned}$	7.50 ma	$\mathrm{CF}_{3} \mathrm{COOD}$
$\begin{aligned} & \mathrm{R}=3 \text {-indol } \mathrm{yl}-\mathrm{CH}_{2}- \\ & \mathrm{R}^{\prime \prime}=\mathrm{H} \end{aligned}$	$\begin{array}{cc} \text { indol } & 7.10 \mathrm{ma} \\ -\mathrm{CH}_{2}- & 3.10 \mathrm{~m} \\ \text { or } & 3.70 \mathrm{~m}_{\mathrm{a}} \end{array}$		2.18 s	$\begin{aligned} & 3.10 \mathrm{ma} \\ & 3.70 \mathrm{ma}_{\mathrm{a}} \text { or } \end{aligned}$	7.10 ma	$\mathrm{NaOD}+$ $\mathrm{D}_{2} \mathrm{O}$

a: complex overlapping pattern.
REFERENCES
(1) Dr. H.-H. Frey, unpublished pharmacological result.
(2) J.W. Cornforth, The Chemistry of Penicillin, p730, Princeton Univ. Press(1949); W. Steglich, G. Hoefle, W. König and F. Weygand, Chem.Ber. 101, 308(1968); R. Huisgen and E. Funke, Angew. Chem. 79, 320(1967); R. Huisgen, E. Funke, F.C. Schaefer and R. Knorr, ibid., 321(1967).
(3) G. Kille and J.P. Fleury, Bull.Soc.Chim. Fr. (1968), 4636.
(4) R.C. Elderfield, Heterocyclic Compounds, Vol.5, p367, John Wiley and Sons Inc., New York(1957).
(5) W. Steglich and G. Hoefle, Angew. Chem. 80, 78, (1968)
(6) e.g. H. Hellmann and G. Optitz, α-Aminoalkylierung, p99,Verlag Chemie, Weinheim/Bergstr. (1960).
(7) F. Lund, unpublished result.

