2-p-CHLOROPHENYLOXAZOLIN-5-ONES IN THE MANNICH REACTION

Hans Jørgen Petersen

Leo Pharmaceutical Products, Ballerup, Denmark.

(Received in UK 13 February 1969; accepted for publication 24 March 1969)

In the search for 2-substituted analogues of 2-p-chlorobenzamido-3-dialkylaminopropionic acids which possessed analgetic activity (1) it was disclosed that 2-p-chlorophenyloxazolin-5 -ones I, as active 4H-compounds, enter into an aminoalkylation reaction with secondary amines and formaldehyde, prior to ring cleavage in a hydroxylic solvent. The initial step in this concerted conversion of I into II is believed to be the first reported example of a Mannich reaction involving the 4-position of I, although other reactions are known to occur at this position (2).

A number of relatively stable 2-p-chlorophenyloxazolin-5-ones was prepared in good yield by brief heating of the respective α -p-chlorobenzamido acids in acetic anhydride at 90-125°C. The compounds could be recrystallized from anhydrous ethanol. Their I.R. spectra (KBr) showed characteristic absorptions at 1815-25 cm⁻¹ (C=0) and 1645-65 cm⁻¹ (C=N). Exceptions were found with R=COOEt (Ia) and R=C₆H₅ (Ib), displaying broad absorption at 2300-2900 cm⁻¹ and at 1625-1725 (Ia) and 1645-65 cm⁻¹ (Ib). This, in addition to the very poor solubility in organic media, points to the assignment of the isomeric structure III as the more appropriate one for (Ia-b). Recently similar structural arguments for 2-p-nitrophenyl-4-phenyloxazolin-5-one have been presented (3). (Ia) gave an intensely blue colour with ethanolic ferric chloride, as reported for 2-phenyl-4-carbe thoxyoxazolin-5-one (4).

On prolonged heating in acetic anhydride the formation of the strongly yellow Ib was accompanied by the appearance of fair amounts of a new product, mp. 132.5-33°C. Elemental analysis, I.R. and N.M.R. spectra as well as reactions established the structure IV, $C_{17}H_{12}ClNO_3$. I.R. (KBr): 1795 and 1645 cm⁻¹. N.M.R. (10%, CCl₄): 9 aromatic protons (δ 7.60, m) and 3 methyl protons (δ 2.37, s). U.V.: $\lambda_{max}^{EtOH}(\varepsilon)$: 240 mµ (20.500), 299 mµ (18.900). With traces of alkali in ethanol IV was quickly converted into Ib. Triethylamine-catalyzed reaction with aniline in ether gave Ib and acetanilide. The formation of the 2-p-nitrophenyl analogue of IV under like conditions and a more general synthesis of enol esters of this type have been described (3, 5).

Addition of I to a small excess of secondary amine and aqueous formaldehyde in methanol or ethanol at 0-20^oC and reaction for 1-20 hours gave the respective esters II in 65-90% yield. Some esters were hydrolyzed to the free acid (R''=H) with alkali. Starting from L- α -p-chlorobenzamido acids optically inactive products were obtained. The I.R. spectra (KBr) of the esters had absorptions at 3400-3440 (NH), 1730-40 (ester C=0) and 1650-70 (amide C=0) cm⁻¹. No reaction was observed in ethanol, when ethyl α -p-chlorobenzamido- α -phenylacetate was used in place of Ib (6).

In a single attempt of reaction in aqueous solution the glycine azlactone (I, R=H) with dimethylamine and formaldehyde gave a 10% yield of the amino acid II (R=R''=H, R'=CH₃) which was identical with the compound obtained by addition of dimethylamine to α -p-chlorobenzamidoacrylic acid (7).

IV with 2 moles of aqueous dimethylamine and 1 mole of formaldehyde in methanol gave II, $(R=C_6H_5, R'=R''=CH_3)$ in 80% yield, presumably via intermediate formation of Ib. Under similar conditions in 2-trifluoroethanol IV afforded the free acid II $(R=C_6H_5, R'=CH_3, R''=H)$, apparently as a result of a concomitant smooth hydrolysis of the 2-trifluoroethyl ester in the weakly

	II ,	CH 2 ^N R-C-CO NHCO	^{R'} 2 DR'' ^C 6 ^H 4 ⁻¹	Cl-p							
R	o_	R'a	R''	mp. °C	Formula		Calcd	.%	â	Found	1 %
	mp. C			170 72	G 11 (77) O	52.04		N		H	N
п	120-20	^{(Cn} 3 [/] 2	n a)	1/2-/3	^C 12 ^H 15 ^{C1N} 2 ^O 3	53.24	2.29	10.35	53.33	5.69	10.13
CH ₃	104-05	(CH ₃) ₂	на)	140-43	^C 13 ^H 20 ^{C1} 2 ^N 2 ^O 4	46.06	5.95	8.26	46.21	6.12	8.10
СН3	104-05	(CH ₃) ₂	СН 3	83-83.5	C14H19C1N2O3	56.27	6.41	9.37	55.95	6.41	9.15
CH3	104-05	(CH3)2	^С 2 ^Н 5	73-74	C ₁₅ H ₂₁ C1N ₂ O ₃	57.56	6.76	8.95	57.64	6.70	8.84 ^{f)}
сн ₃ s(сн ₂)2	not isol.	(CH ₃) ₂	СН 3	78-79.5	C ₁₆ H ₂₃ C1N ₂ O ₃ S	53.55	6.46	7.80	53.60	6.50	7.73 ^{g)}
^С 6 ^Н 5 ^{СН} 2	137-38	(CH ₃) ₂	н ^{ь)}	170-70.5	^C 19 ^H 23 ^{C1N} 2 ^O 4	60.21	6.12	7.39	60.09	6.13	7.14
с _{9^н8^{nc)}}	163-65	(CH ₃)2	СН 3	150-52	C ₂₂ H ₂₄ C1N ₃ O ₃	63.84	5.84	10.16	63.56	5.90	9.96
C9H8N	163-65	C ₄ H ₈ O ^{d)}	сн3	12 4-2 6	C24H26C1N3O4	63.22	5.75	9.22	63.13	5.93	9.24
°9 ^H 8 ^N	163-65	с ₄ н ₈ 0	с ₂ н ₅	176.5-77.5	^C 25 ^H 28 ^{C1N} 3 ^O 4	63.89	6.01	8.94	63.84	6.13	8.82
с ₉ н ₈ n	163-65	с _{5^н11} м ^{е)}	^С 2 ^Н 5	161-64	^C 26 ^H 31 ^{C1N} 4 ^O 3	64.65	6,47	11.60	64.70	6.53	11.55
C6H5	163-63.5	(CH ₃) ₂	н	150	C ₁₈ H ₁₉ C1N ₂ O ₃	62.30	5.52	8.07	62.21	5.70	7.96
с ₆ н ₅	163-63.5	(CH ₃) ₂	CH3	122.5-24	C ₁₉ H ₂₁ C1N ₂ O ₃	63.24	5.86	7.76	63.22	5.86	7.62 ^{h)}

a): hydrochloride, hydrate; picrate: mp. 205-206.5°C: b): hydrate: c): 3-Indolylmethyl:

d): NR'2=morfolino; e): NR'2=N-methylpiperazino.

f): Cl calcd.: 11.33: found 11.36%

g): S calcd.: 8.93; found 9.12%

h): Cl calcd.: 9.83: found 9.80%

alkaline medium.

The N.M.R. data of some 3-dimethylaminopropionic acid derivatives are compiled in the following table.

Acknowledgements: Thanks are due to Mr. F. Lund for valuable discussions and to Mr. N. Rastrup Andersen for providing the N.M.R. data.

CH ₂ N(CH ₃) ₂	N.M.R. data (Varian A6OA. δ ppm from T.M.S., (J) cps).										
R-C-COOR'' NHCOC6H4C1-P	R	R''	N <ch3 CH3</ch3 	CH2N<	- ()-C1	Solvent					
$\frac{R=CH_3}{R''=CH_3}$	1.68 s	3.77 s	2.27 s	2.80 d (14) 3.00 d	7.43 d (8) 7.77 d	CDC13					
$\mathbb{R}^{\mathbf{R}=\mathbf{CH}_{3}}$ $\mathbb{R}^{\mathbf{U}}=\mathbb{CH}_{3}\mathbf{CH}_{2}^{-1}$	1.68 s	$-\frac{CH_2CH_3}{-CH_2CH_3} \stackrel{4.26 q}{(7)}$	2.27 s	2.82 d (14) 3.03 d	7.43 d (8) 7.77 d	CDC13					
$\frac{R=CH_3SCH_2CH_2}{R''=CH_3}$	$S-CH_2CH_2$ 2.50 m _a CH ₃ S- 2.04 s	3.83 s	2.23 s	2.75 d (14) 3.40 d	7.45 d (8) 7.80 d	CDC13					
$\overline{R=C_6H_5}$ $R''=CH_3$	7.37 m	3.75 s	2.25 s	3.47 d (13) 3.70 d	7.45 d (9) 7.82 d	CDC13					
R=3-indolyl-CH ₂ - R''=CH ₃	indol 7.15 m _a -CH ₂ - 3.37 d - 3.91 d(15)	3.73 s	2.23 s	2.95 d (14) 3.63 d	7.49 m _a	CDC13					
R=CH ₃ R''=H	1.92 s		3.13 s 3.30 s	3.85 d (15) 4.07 d	7.58 d (9) 7.90 d	cf₃∞od					
R=C ₆ H ₅ CH ₂ - R''=H	C_6H_5 7.50 m _a -CH ₂ - 4.05 s or - 3.55 m		3.13 s 3.22 s	3.55 m or 4.05 s	7.50 m _a	CF ₃ ∞0D					
R=3-indolyl-CH ₂ - R''=H	indol 7.10 m _a -CH ₂ - 3.10 m _a or 3.70 m _a		2.18 s	3.10 m _a 3.70 m _a or	7.10 m _a	NaOD + D ₂ O					

m_: complex overlapping pattern.

REFERENCES

(1) Dr. H.-H. Frey, unpublished pharmacological result.

- (2) J.W. Cornforth, <u>The Chemistry of Penicillin</u>, p730, Princeton Univ. Press(1949); W. Steglich,
 G. Hoefle, W. König and F. Weygand, <u>Chem.Ber.101</u>, 308(1968); R. Huisgen and E. Funke, <u>Angew</u>.
 <u>Chem.,79</u>,320(1967); R. Huisgen, E. Funke, F.C. Schaefer and R. Knorr, ibid., 321(1967).
- (3) G. Kille and J.P. Fleury, Bull.Soc.Chim.Fr. (1968), 4636.
- (4) R.C. Elderfield, Heterocyclic Compounds, Vol.5, p367, John Wiley and Sons Inc., New York(1957).
- (5) W. Steglich and G. Hoefle, <u>Angew.Chem.80</u>, 78,(1968)
- (6) e.g. H. Hellmann and G. Optitz, <u>α-Aminoalkylierung</u>, p99, Verlag Chemie, Weinheim/Bergstr. (1960).
- (7) F. Lund, unpublished result.